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Adaptive recognition and filtering of noise using wavelets

S. Boccaletti, A. Giaquinta,* and F. T. Arecchi†

Istituto Nazionale di Ottica, Largo E. Fermi, 6, I50125 Florence, Italy
~Received 7 October 1996; revised manuscript received 20 December 1996!

We combine wavelet transform and adaptive recognition techniques to introduce a filtering process able to
analyze, categorize, and remove additive noise from experimental time series, without previous information
either on the correlation properties of noise or on the dimension of the deterministic signal. The method is
applied to a high dimensional delayed chaotic time series affected by additive white and colored noises. The
obtained results show that the reconstruction of the signal both in real and in Fourier space is effective through
the discrimination of noise from the deterministic part.@S1063-651X~97!15005-X#

PACS number~s!: 05.45.1b, 05.40.1j
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The wavelet transform~WT! is a mathematical micro
scope@1#, whereby a time signal can be decomposed i
representation into both time and frequency. With respec
the Fourier transform~FT!, WT has the advantage of loca
izing the appearance of transient events.

Its application to experimental time series has beco
widespread@2# in seismic signal analysis@3#, image process-
ing @4#, music @5#, magnetic resonance imaging@6#, image
compression@7#, optics@8#, turbulence@9#, neurophysiology
@10#, speech discrimination@11#, fractal analysis@12#, DNA
sequence analysis@13#, galaxies@14#, and asteroids@15# dis-
crimination in observational cosmology.

Here the one-dimensionalDAUB20 @16# version of WT is
combined with an adaptive strategy which recognizes cha
features in experimental time series@17#, to provide an effi-
cient filtering process, whereby one can detect and rem
additive noise, with no previous knowledge either of t
noise correlation properties, or of the dimension of the no
less data set. The method recognizes and removes frequ
by frequency the amount of energy coming from noise, th
reconstructing the deterministic part of the signal.

The adaptive algorithm performs an observation task w
a sequence of nonfixed observation time intervals~OTI’s!
which minimize the second variations of the signal. Th
way, whenever a fixed OTI yields a geometrically irregu
data series~as in the case of a chaotic signal!, the adaptive
algorithm provides a geometrically regular one at irregu
OTI’s. Given an experimental chaotic signalx(t), for each
embedding componenti ~i51,...,m; m being the selected
embedding dimension@18#! and at the timetn115tn1tn
~tn being the actual OTI to be later updated!, one defines the
variations

dxi~ tn11![xi~ tn11!2xi~ tn!, ~1!

and the variation rates
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l i~ tn11![
1

tn
logUdxi~ tn11!

dxi~ tn!
U. ~2!

Then, the minimum of all

tn11
~ i ! 5tn

~ i !@12tanh„gl i~ tn11!…# ~3!

( i5 i ,...,m) is chosen astn11 and a new observation is pe
formed at tn125tn111tn11 . The procedure describe
above is repeated for any embedding dimensionm up to a
maximum embedding dimensionM .

Equation~3! arises from the following considerations. I
order to obtain a sequence of geometrically regulardxi , we
contract~expand! the observation time interval when the a
tual value ofdxi is bigger~smaller! than the previously ob-
served one. The hyperbolic tangent function maps the wh
range ofgl i into the interval (21,11). The constantg,
strictly positive, is chosen in such a way as to forbidtn

( i )

from going to zero. It may be taken as ana priori sensitivity.
A more sensible assignment would consist in looking at
unbiased dynamical evolution for a while and then taking
g value smaller than the reciprocal of the maximall re-
corded in that time span. Choosing a fixedg is like adjusting
the connectivities of a neural network by a preliminary lea
ing session, while adjustingg upon the information accumu
lated over a given number of previous time steps correspo
to consideringg as a kind of long-term memory, as oppos
to the short-term memory represented by the sequenc
tn @19#.

We updateg everyL OTI, through the rule

g5g01mY SM(
i51

m

(
k51

L

ul i~ tk!u D . ~4!

Here the sum runs over all the actual embedding dimens
( i51,...,m) and over all the previousL OTI’s (k
51,...,L). g0.0 is a safety term providing a minimum
sensitivity in case 1/@( i51,...,m(k51,...,Lul i(tk)u# gets close to
zero @17#. The factorm/M has been introduced to homog
enize the calculation ofg at any embedding dimension. No
tice that, when the maximum embedding dimensionM is
reached, Eq.~4! reduces to the definition introduced for th
case of a model problem with preassigned dimensions@17#.
5393 © 1997 The American Physical Society
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FIG. 1. Power spectrum of the solution of th
Mackey-Glass~MG! delayed equation~see text!.
The x axis is labeled with the dimensionless fre
quency channel numberf , the y axis with the
values of the power spectrumPMG ~in arbitrary
units!.
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We thus obtain a sequence of observation times~starting
from t0 and t̃[t0! given by

t0 ,t15t01 t̃, t25t11t1 ,..., tn115tn1tn ,...

corresponding to which the variations ofdxi(tn) can be re-
duced below a preassigned value. The observations
formed at those times provide a ‘‘regularized’’ geomet
however the above time sequence is irregular and now
cludes the chaotic information that was in the original ge
metric sequencex(t). From the obtained irregular OTI se
quence one can extract the correlation properties of
signal@17# as the periods of the unstable periodic orbits e
bedded in the chaotic attractor@20#. It is important to notice
that in Eqs.~1! and ~2!, differences and variation rates a
evaluated over the adaptivet, which has to be much large
than the experimental sampling timets @17#, but much
smaller than the characteristic periodtUPO of the unstable
periodic orbits embedded within the chaotic attractor@20#.
As a consequence, our method requirests to be about two
orders of magnitude smaller thantUPO. This way, the
er-
,
n-
-

e
-

method introduces a natural adaptation time scale interm
ate between the minimum resolution time and the time sc
of the periodic orbits.

For an empirical series of data, giving rise to a seque
of N OTI’s, a discrimination between determinism and no
is provided by the following indicator:

b~m!5
1

N (
n51

N U)
i51

N

l i~ tn!U. ~5!

Its heuristic meaning emerges from the following consid
ations. Expandingl i to first order and referring to the un
time step tn51, we can write l i(tn11)5@dxi(tn11)
2dxi(tn)#/dxi(tn). We now evaluate the variation over th
unit time of the volumeVn5P i51

m dxi(tn) made by allm
measured variations at timetn . The relative variation rate
r n5(Vn112Vn)/Vn is given by

r n5(
i

l i1(
iÞ j

l il j1•••1)
i

l i , ~6!
is

ta
FIG. 2. g vs u plots ~see text for definitions!.
~a! MG plus colored noise.~b! Pure MG~circles
and dashed line! and MG plus white noise~tri-
angles and dot-dashed line!. The procedure for
the construction of white and colored noises
described in the text.L550, g05531026, M
515. It is evident that the plots of the noisy da
define an optimal filtering thresholdū50.23 for
colored noise andū50.1 for white noise.g andu
are dimensionless quantities.
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55 5395ADAPTIVE RECOGNITION AND FILTERING OF NOISE . . .
FIG. 3. Time domain reconstruction of the signal for~a! MG
plus white noise and~b! MG plus colored noise. Symbols and line
are in the legends. Same parameters and noises as in Fig. 2
maximum accuracy in the reconstruction is obtained in both ca
for u5 ū. Time is in sampling units, they axis is labeled in arbi-
trary units.
where the indicesi and j runs from 1 tom. Summing up
over all directions of phase space, we introduce the dir
tional averages

^l&5
1

m (
i

l i , ^l2&5
2

m~m21! (
iÞ j

l il j , etc. ~7!

As we further sum over alln OTI’s up to N, the twisting
along the chaotic trajectory makes all directions statistica
equivalent, thus in(nr n we can replacêls& by ^l&s for 2
<s<m. In the case of stochastic noise, since variations o
successive time steps are uncorrelated,dx(tn11)2dx(tn)
.dx(tn) and^l& is close to 1, so that̂l&m5O(1). Instead,
for a deterministic dynamics two successive steps
strongly correlated, hencêl&,1, and the last term of Eq
~6!, that is, ^lm&;^l&m5exp„2m log(1/̂ l&)…, yields the
most sensitive test.

Based on these considerations, we take the sum ove
N trajectory points of the last term of Eq.~6! as theb indi-
cator. In view of what was said above,b scales ase2m for a
deterministic signal@beside a factorO(1) in the exponent#
whereas it scales ase0 for noise.

Given an experimental signalx(t) which is the sum of a
deterministic and of a noisy part, we act on the coefficie
of its WT ~obtained with the DAUB20 basis@16#! by elimi-
nating those that are smaller than a given thresholdu. The
new signalx8(t), generated by inverse WT of the filtered s
of coefficients, undergoes theb text. Increasingu decreases
the slopeg of the logb(m) plot, down to a saturation value o
ḡ for the corresponding pure deterministic dynamics. Th
theg vs u plot results in a monotonically decreasing functio
up to u5 ū where saturation is reached. This way, the mi
mal thresholdū, which extracts from the data as much d
terminism as possible, is adaptively chosen by the algorit
which drives the filter in wavelet space.
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FIG. 4. Accuracy in the Fou-
rier space reconstruction for MG
plus white noise.~a! and~c! report
the dimensionless quantityF ~ra-
tio of the amountPfiltered of filtered
energy to the noise power spec
trumPnoise! vs the frequency chan
nel number f for u5 ū50.1 and
uÞū50.07, respectively.~b! and
~d! show the corresponding histo
gramsD(F) vs F. Same param-
eters as in Fig. 2. The best recon
struction is again confirmed atu
5 ū.
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FIG. 5. Accuracy in the Fou-
rier space reconstruction for MG
plus colored noise~all plots lim-
ited to the frequency range cov
ered by noise!. ~a! and ~c! report
F vs f for u5 ū50.23 anduÞū
50.17, respectively.~b! and ~d!
show the correspondingD(F) vs
F histograms. Same parameters
in Fig. 2. The best reconstructio
is again confirmed atu5 ū.
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A preliminary hint on the possible cleaning of a sign
from noise by coupling WT with ourb indicator was given
in Ref. @21#. However, in that proposalg was taken as a fixed
parameter, and the problem of the optimal threshold was
even tackled.

To show the reliability of this method, we apply it to a s
of l5216 data extracted from the solution of the delay
Mackey-Glass~MG! equation@22# ~dot denotes temporal de
rivative!,

ẋ~ t !520.1x~ t !1
0.2x~ t2T!

11x~ t2T!10
.

ForT5100, MG produces a 7.5-dimensional dynamics@23#.
We affect each of thel /2 Fourier components of the abov
time data with different classes of zero average noise. P
cisely, we generatel /2 random Fourier components~ampli-
tudes homogeneously distributed between 0 and 1, ph
homogeneously distributed between 0 and 2p!, then the in-
verse FT is normalized in such a way as to produce a nois
signal ratio of 0.02 with respect to MG. In a standard wa
the noise to signal ratio is the ratio between the rms no
variance and the rms of the average of the square signal.
way, we have produced white noise@24#. Limiting the same
procedure to a narrower band of Fourier components fr
the frequency channelf 1 to the frequency channelf 2 , we
obtain a colored noise. The role of any narrower band no
with the same spectral density as for the white noise will
course be less crucial, as will be discussed later. Howeve
work in the most disadvantageous case, we consider a
ored noise with the total spectral power as for the white no
~which of course is band limited by the measuring proced
betweenfmin51/2T and fmax51/2ts , whereT is the total
measuring interval andts is the sampling time!.

Our choice off 1 and f 2 arises from the following consid
erations. On one side, a full overlap between the spectr
l
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noise and signal would imply a very difficult filtering task
on the other side, some overlap is needed, otherwise a sim
band-cut filter would do the job. In our case, choosingf 1
52000 andf 253000 means working with a nontrivial over
lap with the power spectrum of MG, as it results from Fig.
In these conditions, any bandpass filter would cause quite
distortions in the reconstruction, insofar as some of the s
pressed frequencies would contain relevant information
the deterministic dynamics.

Both white and colored noise are separately added to
and the resulting signals have been analyzed with our fil
Figure 2 shows the selection mechanism for the filter
threshold. In both cases, a clear plateau (g;21.2) is
reached in the correspondingg vs u plots, and this plateau
corresponds to theg value for pure MG. The plateau clearl
defines the optimal filtering thresholdū. Figure 3 gives the
reconstructions in the time domain operated by the filter
u5 ū anduÞū for the two cases. The difference in the r
constructions atu5 ū anduÞū highlights the effectiveness
of the method.

In order to quantify the robustness of the method in a
lyzing and removing the noise from the data, it is worthwh
to refer to the reconstruction of the signal in the frequen
domain~Fourier space!. A stringent test consists in compa
ing the amount of energy that the filter eliminates from
given Fourier frequency channelf with the same componen
of the noise spectrum. We consider the ratio of the amo
Pfiltered of filtered energy to the noise power spectru
Pnoise. F( f )5Pfiltered( f )/Pnoise( f ) thus measures the accu
racy of the filter in recognizing and eliminating the noi
component in the channelf . F( f )51 for any channelf for
which the noise has been successfully disentangled from
signal. Figures 4 and 5 report theF vs f plots for MG plus
white noise and MG plus coloured noise respectively, cal
lated atu5 ū and atuÞū together with the histograms of th
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55 5397ADAPTIVE RECOGNITION AND FILTERING OF NOISE . . .
distribution around unity. Notice the worsening inF as we
go from Fig. 4 to 5. This is due to having concentrated
total noise power within a narrow frequency range, thus F
5 reports the disentanglement for the case of noise to si
ratio which is of order of 1~the ratio between the bandwidt
of white and colored noises is 32.5/2, thus the spectral d
sity of the colored noise is about 16 times higher than 2!.
This is the reason why the threshold required by the al
rithm has increased fromū50.1 to ū50.23. On the con-
trary, if we work with unperturbed noise spectral power, t
role of any narrow frequency window can be extracted
rectly from the corresponding section of Fig. 4~a!. It is evi-
dent from Figs. 4 and 5 that in both cases the best reco
tion and filtering is obtained foru5 ū.

Besides the simple bandpass filters discussed above,
nonlinear noise-reduction methods have been proposed
chaotic time series@25#. Most of them are based on a pr
liminary reconstruction of the attractor in the embeddi
space and a successive filtering process in this space by
ous techniques. While our method provides a signal rec
struction as faithful as that provided by the methods of R
@25#, it requires a much smaller computational effort. Inde
if a numbers of b applications are needed to extract t
io
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optimal filtering thresholdū, our strategy requires a numbe
of operations equal to (s11)log(N) ~one forward WT of the
original signal ands backward WT of the filtered set o
coefficients! plussN ~s successive applications ofb to each
reconstructed signal!. For largeN, the whole computationa
effort is linear inN, whereas any technique on the embe
ding space which exploits the local dynamical properties
the attractor would imply a number of operations scaling
least asN log(N) @25#.

The above results show that the method here introduce
robust and effective in detecting, recognizing, and filteri
additive noise also in case of rather high dimensional s
tems; it also succeeds in recognizing and removing
quency by frequency the exact amount of energy introdu
by noise. It is important to notice that the described filteri
procedure does not require information on the correlat
properties of the additive noise or on the properties of
noiseless data, thus the method appears easily implemen
in experimental situations.

The authors acknowledge G. Basti and A.L. Perrone
their contribution in the introduction of the adaptive filterin
algorithm.
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