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Adaptive recognition and filtering of noise using wavelets

S. Boccaletti, A. Giaquint,and F. T. AreccHi
Istituto Nazionale di Ottica, Largo E. Fermi, 6, 150125 Florence, ltaly
(Received 7 October 1996; revised manuscript received 20 December 1996

We combine wavelet transform and adaptive recognition techniques to introduce a filtering process able to
analyze, categorize, and remove additive noise from experimental time series, without previous information
either on the correlation properties of noise or on the dimension of the deterministic signal. The method is
applied to a high dimensional delayed chaotic time series affected by additive white and colored noises. The
obtained results show that the reconstruction of the signal both in real and in Fourier space is effective through
the discrimination of noise from the deterministic p481063-651X97)15005-X]

PACS numbsd(s): 05.45+b, 05.40:+]j

The wavelet transform{WT) is a mathematical micro- 1 Xi(thy1)
scope[1], whereby a time signal can be decomposed in a Ni(th11)=—log oxit) | (2
representation into both time and frequency. With respect to : nn
the Fourier transforniFT), WT has the advantage of local- Then, the minimum of all
izing the appearance of transient events.

Its application to experimental time series has become ) =71 —tanhg\;(ths1))] 3
widespread?2] in seismic signal analysi8], image process-
ing [4], music[5], magnetic resonance imagiii§], image (i=i,...,m) is chosen as,,; and a new observation is per-

compressiori7], optics[8], turbulence 9], neurophysiology formed at t,,,=t,.;+7,4+1. The procedure described
[10], speech discriminatiofil1], fractal analysi§12], DNA  above is repeated for any embedding dimensiomp to a
sequence analysj4 3], galaxieqd 14], and asteroidgl5] dis-  maximum embedding dimensidvi.
crimination in observational cosmology. Equation(3) arises from the following considerations. In
Here the one-dimensionalaus20 [16] version of WT is  order to obtain a sequence of geometrically regabgr, we
combined with an adaptive strategy which recognizes chaotigontract(expand the observation time interval when the ac-
features in experimental time serig7], to provide an effi- tual value oféx; is bigger(smalley than the previously ob-
cient filtering process, whereby one can detect and remov@erved one. The hyperbolic tangent function maps the whole
additive noise, with no previous knowledge either of thef@nge ofg; into the interval -1,+1). The constang,
noise correlation properties, or of the dimension of the noisestrictly positive, is chosen in such a way as to forbigl
less data set. The method recognizes and removes frequenié9M going to zero. It may be taken as aipriori sensitivity.

by frequency the amount of energy coming from noise, thug\ more sensible assignment would consist in looking at the
reconstructing the deterministic part of the signal. unbiased dynamical evolution for a while and then taking a
tg value smaller than the reciprocal of the maximare-
corded in that time span. Choosing a fixgds like adjusting
the connectivities of a neural network by a preliminary learn-
ing session, while adjusting upon the information accumu-
lated over a given number of previous time steps corresponds
fo consideringg as a kind of long-term memory, as opposed

to the short-term memory represented by the sequence of

The adaptive algorithm performs an observation task wit
a sequence of nonfixed observation time inter&@3d1’s)
which minimize the second variations of the signal. This
way, whenever a fixed OTI yields a geometrically irregular
data seriedas in the case of a chaotic sigpahe adaptive
algorithm provides a geometrically regular one at irregula
OTI's. Given an experimental chaotic signé(t), for each
embedding componerit (i=1,...,m; m being the selected "n [19].
embedding dimensiofi18]) and at the timet,.;=t,+ 7, We updateg everyL OTI, through the rule
(7, being the actual OTI to be later updatedne defines the

m L
variations g=go+m / M2 > |m<tk>|) : @
OXi(thr)=Xi(th 1) —Xi(ty,), (1) Here the sum runs over all the actual embedding dimensions

(i=1,...m) and over all the previousL OTI's (k
=1,...L). go>0 is a safety term providing a minimum
and the variation rates sensitivity in case IE;_1 . mZk=1..L|\i(tk)|] gets close to
zero[17]. The factorm/M has been introduced to homog-
enize the calculation of at any embedding dimension. No-
*Also at Dept. of Sistemi e Informatica, University of Florence, tice that, when the maximum embedding dimenshMnis
Italy. reached, Eq(4) reduces to the definition introduced for the
TAlso at Dept. of Physics, University of Florence, Italy. case of a model problem with preassigned dimensjaiis
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FIG. 1. Power spectrum of the solution of the
Mackey-Glas§{MG) delayed equatioiisee text
Lol ] The x axis is labeled with the dimensionless fre-
quency channel numbef, the y axis with the
\ values of the power spectruy,g (in arbitrary
107 ] units).
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We thus obtain a sequence of observation tifstarting  method introduces a natural adaptation time scale intermedi-
from ty and7=r,) given by ate between the minimum resolution time and the time scale
of the periodic orbits.

For an empirical series of data, giving rise to a sequence
of N OTI'’s, a discrimination between determinism and noise
is provided by the following indicator:

to,t1:t0+;, t2:tl+7'l,..., tn+l:tn+7nv---

corresponding to which the variations 6%;(t,) can be re-

duced below a preassigned value. The observations per- N | N
formed at those t|mgs provide a “r.eg.ularlzed” geometry, ’B(m):N 2 H Ni(ty)]. (5)
however the above time sequence is irregular and now in- n=1[i=1

cludes the chaotic information that was in the original geo-

metric sequence(t). From the obtained irregular OTI se- ts heuristic meaning emerges from the following consider-
quence one can extract the correlation properties of thgtions, Expanding; to first order and referring to the unit
signal[17] as the periods of the unstable periodic orbits emyime step 7,=1, we can write \i(ty; 1) =[X;(tys1)
bedded in the chaotic attractf0]. It is important to notice  _ sx.(t,)]/8x(t,). We now evaluate the variation over the
that in Egs.(1) and (2), differences and variation rates are unit time of the volumeV,=TI"™ , 8x;(t,) made by allm

. : =1
evaluated over the adaptive which has to be much larger \ea5red variations at timtg. The relative variation rate
than the experimental sampling time, [17], but much

o X rh=WVha+1— V)V, is given by
smaller than the characteristic periegpg of the unstable
periodic orbits embedded within the chaotic attradi®d].
As a consequence, our method requirgdo be about two rnZEi N+ D )\i)\j+...+H i (6)

orders of magnitude smaller than,pg. This way, the 7] [
_ =
02 \Q\ a)
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FIG. 3. Time domain reconstruction of the signal fay MG for th di d inistic d . Th
plus white noise anb) MG plus colored noise. Symbols and lines or the corresponding pure deterministic dynamics. Thus,

are in the legends. Same parameters and noises as in Fig. 2. THE ¥ VS ¢ plot results in a monotonically decreasing function
maximum accuracy in the reconstruction is obtained in both casedp to 6= 6 where saturation is reached. This way, the mini-

for #=6. Time is in sampling units, thg axis is labeled in arbi-

trary units.
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where the indice$ and | runs from 1 tom. Summing up
over all directions of phase space, we introduce the direc-
tional averages

2
m(m—1) { i

S FUNICE

)\i)\j, etc. (7)

As we further sum over alh OTI's up to N, the twisting
along the chaotic trajectory makes all directions statistically
equivalent, thus ir=r,, we can replacé\®) by (\)® for 2
<s=m. In the case of stochastic noise, since variations over
successive time steps are uncorrelatés(t, 1) — ox(t,)

= &X(t,) and(\) is close to 1, so thaiA)"=0(1). Instead,

for a deterministic dynamics two successive steps are
strongly correlated, hencg\)<1, and the last term of Eq.
(6), that is, (A™)~(\)M=exp(—m log(1k\))), yields the
most sensitive test.

Based on these considerations, we take the sum over the
N trajectory points of the last term of E¢6) as theg indi-
cator. In view of what was said abov@,scales ag™ " for a
deterministic signaJbeside a facto©(1) in the exponent
whereas it scales & for noise.

Given an experimental signalt) which is the sum of a
deterministic and of a noisy part, we act on the coefficients
of its WT (obtained with the DAUB20 basid6]) by elimi-
nating those that are smaller than a given threshbl@he
new signalx’(t), generated by inverse WT of the filtered set
of coefficients, undergoes th@text. Increasing) decreases
the slopey of the loga(m) plot, down to a saturation value of

mal thresholdd, which extracts from the data as much de-
terminism as possible, is adaptively chosen by the algorithm
which drives the filter in wavelet space.
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FIG. 4. Accuracy in the Fou-
rier space reconstruction for MG
plus white noise(a) and(c) report
| the dimensionless quantity (ra-
tio of the amounPyjeeq Of filtered

2 energy to the noise power spec-
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FIG. 5. Accuracy in the Fou-
rier space reconstruction for MG
plus colored noisdall plots lim-
0 ‘ 0 . ited to the frequency range cov-
2000 2500 f 3000 0 1 F 2 ered by nois}g&) and (c) report.
F vs f for 6=60=0.23 and6+ 6
2 40 =0.17, respectively(b) and (d)
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F histograms. Same parameters as
in Fig. 2. The best reconstruction
: is again confirmed af= 6.
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A preliminary hint on the possible cleaning of a signal noise and signal would imply a very difficult filtering task;
from noise by coupling WT with oug indicator was given on the other side, some overlap is needed, otherwise a simple
in Ref.[21]. However, in that proposg was taken as a fixed band-cut filter would do the job. In our case, choosing
parameter, and the problem of the optimal threshold was not 2000 andf,=3000 means working with a nontrivial over-
even tackled. lap with the power spectrum of MG, as it results from Fig. 1.

To show the reliability of this method, we apply it to a set | these conditions, any bandpass filter would cause quite big
of 1=2'° data extracted from the solution of the delayedgistortions in the reconstruction, insofar as some of the sup-
Mackey-GlasgMG) equation(22] (dot denotes temporal de- hressed frequencies would contain relevant information on
rivative), the deterministic dynamics.

Both white and colored noise are separately added to MG
and the resulting signals have been analyzed with our filter.
Figure 2 shows the selection mechanism for the filtering
threshold. In both cases, a clear plateay~(—1.2) is

ForT;lOO, MS pfrorcilg/ces a ?.5-dimensional dyfna;]n[iz?g' reached in the correspondingvs 6 plots, and this plateau
We aftect each of t 2 Fourier components of the above corresponds to the value for pure MG. The plateau clearly
time data with different classes of zero average noise. Pre- —

cisely, we generat&/2 random Fourier componentampli- defines the. optimal filte.ring threshow Figure 3 gives .the
tudes homogeneously distributed between 0 and 1, phaségcmstructlog in the time domain oper.ated by the filter at
homogeneously distributed between 0 and)2then the in- 0= 0 and 6+ ¢ for the two cases. The difference in the re-
verse FT is normalized in such a way as to produce a noise tePnstructions ab= ¢ and 6+ ¢ highlights the effectiveness
signal ratio of 0.02 with respect to MG. In a standard way,of the method.
the noise to signal ratio is the ratio between the rms noise In order to quantify the robustness of the method in ana-
variance and the rms of the average of the square signal. Thigzing and removing the noise from the data, it is worthwhile
way, we have produced white noi24]. Limiting the same  to refer to the reconstruction of the signal in the frequency
procedure to a narrower band of Fourier components fronflomain(Fourier space A stringent test consists in compar-
the frequency channdl; to the frequency channdl,, we ing the amount of energy that the filter eliminates from a
obtain a colored noise. The role of any narrower band noisgiven Fourier frequency channgwith the same component
with the same spectral density as for the white noise will ofof the noise spectrum. We consider the ratio of the amount
course be less crucial, as will be discussed later. However, tBiirered Of filtered energy to the noise power spectrum
work in the most disadvantageous case, we consider a coPnoise: F(f ) = Priered f )/Pnoisd f ) thus measures the accu-
ored noise with the total spectral power as for the white noiséacy of the filter in recognizing and eliminating the noise
(which of course is band limited by the measuring procedurgomponent in the channél F(f )=1 for any channef for
betweenf ,,=1/2T and f,,,=1/27s, whereT is the total which the noise has been successfully disentangled from the
measuring interval and is the sampling time signal. Figures 4 and 5 report tlevs f plots for MG plus

Our choice off, andf, arises from the following consid- White noise and MG plus coloured noise respectively, calcu-
erations. On one side, a full overlap between the spectra dated atd= 6 and até+ 6 together with the histograms of the

} 0.(t—T)
X(t): —O.].X(t)+ m
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distribution around unity. Notice the worseningfnas we  optimal filtering threshold, our strategy requires a number
go from Fig. 4 to 5. This is due to having concentrated thepf operations equal tos{+ 1)log(N) (one forward WT of the
total noise power within a narrow frequency range, thus Figoriginal signal ando backward WT of the filtered set of

5 reports the disentanglement for the case of noise to 5i9”%befficient$ plusoN (o successive applications gfto each
ratio which is of order of Xthe ratio between the bandwidth .o.onstructed signalFor largeN, the whole computational
of white and colored noises is 32.5/2, thus the spectral dens, s jinear inN, whereas any technique on the embed-
sity of the colored noise is about 16 times higher than.2% ding space which exploits the local dynamical properties of

This is the reason why the threshold required by the algo'Ehe attractor would imply a number of operations scaling at

rithm has increased frord=0.1 to §=0.23. On the con- least asN log(N) [25].
trary, if we work with unperturbe_d noise spectral power, th? The above results show that the method here introduced is
roletl 0]; anytrr:arrow frequgncy er}dOW fcgn be e|>t<t.racte.d dI'robust and effective in detecting, recognizing, and filtering
rectly rom the corrésponding section o idan ~Itis evi- additive noise also in case of rather high dimensional sys-
dent from Figs. 4 and 5 that in both cases the best reCOgNtems; it also succeeds in recognizing and removing fre-
tion and filtering is obtained fof=6. quency by frequency the exact amount of energy introduced
Besides the simple bandpass filters discussed above, othgy noise. It is important to notice that the described filtering
nonlinear noise-reduction methods have been proposed fgfiocedure does not require information on the correlation
chaotic time serie$25]. Most of them are based on a pre- hrgperties of the additive noise or on the properties of the

liminary reconstruction of the attractor in the embeddingpgiseless data, thus the method appears easily implementable
space and a successive filtering process in this space by vajj; experimental situations.

ous techniques. While our method provides a signal recon-

struction as faithful as that provided by the methods of Ref. The authors acknowledge G. Basti and A.L. Perrone for
[25], it requires a much smaller computational effort. Indeed their contribution in the introduction of the adaptive filtering
if a numbero of B applications are needed to extract thealgorithm.
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